Phase chaos in the anisotropic complex Ginzburg-Landau equation
نویسندگان
چکیده
منابع مشابه
Time-Periodic Spatial Chaos in the Complex Ginzburg-Landau Equation
The phenomenon of time-periodic evolution of spatial chaos is investigated in the frames of oneand two-dimensional complex Ginzburg-Landau equations. It is found that there exists a region of the parameters in which disordered spatial distribution of the field behaves periodically in time; the boundaries of this region are determined. The transition to the regime of spatiotemporal chaos is inve...
متن کاملThe Complex Ginzburg-landau Equation∗
Essential to the derivation of the Ginzburg-Landau equation is assumption that the spatial variables of the vector field U(x, y, t) are defined on a cylindrical domain. This means that (x, y) ∈ R ×Ω, where Ω ⊂ R is a open and bounded domain (and m ≥ 1, n ≥ 0), so that U : R ×Ω×R+ → R . The N ×N constant coefficient matrix Sμ is assumed to be non-negative, in the sense that all its eigenvalues a...
متن کاملThe Complex Ginzburg-Landau equation for beginners
Several systems discussed at this workshop on Spatio-Temporal Patterns in Nonequilibrium Complex Systems have been related to or analyzed in the context of the so-called Complex Ginzburg-Landau equation (CGL). What is the difference between the physics underlying the usual amplitude description for stationary patterns and the one underlying the CGL? Why are there many more stable coherent struc...
متن کاملControlling spatio-temporal chaos in the scenario of the one-dimensional complex Ginzburg-Landau equation.
We discuss some issues related with the process of controlling space-time chaotic states in the one-dimensional complex Ginzburg-Landau equation. We address the problem of gathering control over turbulent regimes with the use of only a limited number of controllers, each one of them implementing, in parallel, a local control technique for restoring an unstable plane-wave solution. We show that ...
متن کاملHole-defect chaos in the one-dimensional complex Ginzburg-Landau equation.
We study the spatiotemporally chaotic dynamics of holes and defects in the one-dimensional (1D) complex Ginzburg-Landau equation (CGLE). We focus particularly on the self-disordering dynamics of holes and on the variation in defect profiles. By enforcing identical defect profiles and/or smooth plane wave backgrounds, we are able to sensitively probe the causes of the spatiotemporal chaos. We sh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 1998
ISSN: 1063-651X,1095-3787
DOI: 10.1103/physreve.57.r6249